Incorporating covariates in skewed functional data models.
نویسندگان
چکیده
We introduce a class of covariate-adjusted skewed functional models (cSFM) designed for functional data exhibiting location-dependent marginal distributions. We propose a semi-parametric copula model for the pointwise marginal distributions, which are allowed to depend on covariates, and the functional dependence, which is assumed covariate invariant. The proposed cSFM framework provides a unifying platform for pointwise quantile estimation and trajectory prediction. We consider a computationally feasible procedure that handles densely as well as sparsely observed functional data. The methods are examined numerically using simulations and is applied to a new tractography study of multiple sclerosis. Furthermore, the methodology is implemented in the R package cSFM, which is publicly available on CRAN.
منابع مشابه
Maximum Likelihood Estimation of Parameters in Generalized Functional Linear Model
Sometimes, in practice, data are a function of another variable, which is called functional data. If the scalar response variable is categorical or discrete, and the covariates are functional, then a generalized functional linear model is used to analyze this type of data. In this paper, a truncated generalized functional linear model is studied and a maximum likelihood approach is used to esti...
متن کاملCorrecting for covariate measurement error in logistic regression using nonparametric maximum likelihood estimation
When covariates are measured with error, inference based on conventional generalized linear models can yield biased estimatesof regressionparameters. This problem can potentiallybe rectied byusing generalizedlinear latent and mixedmodels (GLLAMM), including a measurementmodel for the relationship between observed and true covariates. However, the models are typically estimated under the assump...
متن کاملکاربرد مدل توأم بقا و داده های طولی در بیماران دیالیز صفاقی
Background and Aim: In many medical studies along with longitudinal data, which are repeatedly measured during a certain time period, survival data are also recorded. In these situations, using models such as, mixed effects models or GEE method for longitudinal data and Cox model for survival data, are not appropriate because some necessary assumptions are not met. Instead, the joint models hav...
متن کاملInferences in Censored Cost Regression Models with Empirical Likelihood
In many studies of health economics, we are interested in the expected total cost over a certain period for a patient with given characteristics. Problems can arise if cost estimation models do not account for distributional aspects of costs. Two such problems are (1) the skewed nature of the data, and (2) censored observations. In this paper we propose an empirical likelihood (EL) method for c...
متن کاملExamining the relative influence of familial, genetic, and environmental covariate information in flexible risk models.
We present a method for examining the relative influence of familial, genetic, and environmental covariate information in flexible nonparametric risk models. Our goal is investigating the relative importance of these three sources of information as they are associated with a particular outcome. To that end, we developed a method for incorporating arbitrary pedigree information in a smoothing sp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biostatistics
دوره 16 3 شماره
صفحات -
تاریخ انتشار 2015